If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5x^2+14.44x=0
a = 2.5; b = 14.44; c = 0;
Δ = b2-4ac
Δ = 14.442-4·2.5·0
Δ = 208.5136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14.44)-\sqrt{208.5136}}{2*2.5}=\frac{-14.44-\sqrt{208.5136}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14.44)+\sqrt{208.5136}}{2*2.5}=\frac{-14.44+\sqrt{208.5136}}{5} $
| 33=d+9 | | 2.5x^2+14.44x=0 | | 33=d+9 | | 33=d+9 | | 7.7u+7=10 | | 3/³x=12 | | 1/2(x-7)=1/3(x-12) | | 11=g10 | | 23=s-27 | | 8*x^2+42*x=6*x | | 23=s–27 | | 8*x^2+36*x=0 | | 37=c+10 | | 42=15+n | | 42=15+n | | 35=p+9 | | `-47+w=-10 | | 1.5x1.5=2.25 | | 41=z+21 | | 41=z+21 | | 41=z+21 | | 41=z+21 | | 41=z+21 | | 41=z+21 | | 41=z+21 | | –10=4p+–6 | | –10=4p+–6 | | –10=4p+–6 | | –10=4p+–6 | | 41=z+21 | | 41=z+21 | | 41=z+21 |